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Abstract
Photosynthesis is a major process included in land surface models. Accurately estimating the parameters of the photosynthetic 
sub-models can greatly improve the ability of these models to accurately simulate the carbon cycle of terrestrial ecosys-
tems. Here, we used a hierarchical Bayesian approach to fit the Farquhar–von Caemmerer–Berry model, which is based on 
the biochemistry of photosynthesis using 236 curves for the relationship between net  CO2 assimilation and changes in the 
intercellular  CO2 concentration. An advantage of the hierarchical Bayesian algorithm is that parameters can be estimated at 
multiple levels (plant, species, plant functional type, and population level) simultaneously. The parameters of the hierarchical 
strategy were based on the results of a sensitivity analysis. The Michaelis–Menten constant (Kc25), enthalpies of activation 
(EJ and EV), and two optical parameters (θ and α) demonstrated considerable variation at different levels, which suggests that 
this variation cannot be ignored. The maximum electron transport rate (Jmax25), maximum rate of Rubisco activity (Vcmax25), 
and dark respiration in the light (Rd25) were higher for broad-leaved plants than for needle-leaved plants. Comparison of the 
model’s simulated outputs with observed data showed strong and significant positive correlations, particularly when the model 
was parameterized at the plant level. In summary, our study is the first effort to combine sensitivity analysis and hierarchi-
cal Bayesian parameter estimation. The resulting realistic parameter distributions for the four levels provide a reference for 
current and future land surface models. Furthermore, the observed variation in the parameters will require attention when 
using photosynthetic parameters in future models.

Keywords Photosynthesis · FvCB model · Sensitivity analysis · Hierarchical Bayesian analysis · Plant level · Species level · 
Plant functional type level · LSMs

Introduction

Photosynthesis is the process by which plants take up 
carbon. It is therefore both an integral part of the terres-
trial ecosystem carbon cycle (Luo et al. 2003; Trudinger 
et al. 2007; Fox et al. 2009) and a decisive factor in the 
development of plant biomass (Amane 2011; Fischer et al. 
2014). Thus, studies of photosynthetic processes have 
drawn much attention in many fields, including climate 
change and agronomy (Sellers et al. 1997; Pitman 2003; 
Medlyn et al. 2011; Fisher et al. 2014). For more than 
a century, various models of photosynthesis have been 
developed, ranging from equations driven by several lim-
ited factors (Blackman 1905) to empirical models such 
as the Michaelis–Menten model (Michaelis and Menten 
1913), the rectangular hyperbolic model (Baly 1935), the 
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non-rectangular hyperbolic model (Thornley 1976), and 
mechanistic models (i.e., Farquhar et al. 1980; Collatz 
et al. 1991). Among them, the model proposed by (Farqu-
har et al. 1980) (hereafter, the FvCB model) was based on 
a rigorous consideration of biochemical mechanisms, and 
as a result has been widely used in many land surface mod-
els, such as SiB2 (Sellers et al. 1995a, b), CLM (Bonan 
et al. 2011), BIOME-BGC (Running and Hunt 1993), and 
ECOSYS (Hansen et al. 2005).

However, to improve the simulation accuracy of photo-
synthesis, the parameters in the FvCB model must be prop-
erly identified and estimated. Bonan et al. (2011) pointed out 
that the uncertainty in the Community Land Model (CLM4) 
estimates of the gross primary production (GPP) due to 
uncertainty in the photosynthetic parameters would be about 
equal to the uncertainty that derives from structural errors 
in the model. Due to the high nonlinearity and noncontinu-
ity of the FvCB model, many researchers have looked for 
effective optimization methods (Dubois et al. 2007; Sharkey 
et al. 2007; Xu et al. 2012). Unfortunately, researchers have 
not reached an agreement on how many parameters in the 
model and which ones must be estimated more accurately. 
For example, Zhu et al. (2011) estimated all the parameters 
in the FvCB model, whereas other researchers selected only 
a few parameters: the maximum rate of Rubisco activity 
(Vcmax), the maximum electron transport rate (Jmax), triose 
phosphate limitation (TPU), dark respiration (Rd), and meso-
phyll conductance (gm) (Miao et al. 2009) or just Vcmax, Jmax, 
gm, and Rd (Su et al. 2009). Thus, it’s necessary to improve 
our understanding of the behavior of the parameters in the 
FvCB model and identify the parameters that are most sensi-
tive to environmental factors and vegetation characteristics.

Sensitivity analysis is a powerful method to identify the 
key parameters that determine the performance of a model 
(Tang et al. 2007a; Wang et al. 2013) and has been widely 
used in many fields, including economics and the physical, 
social, and environmental sciences. Of the various sensitiv-
ity analysis methods that have been developed, the Morris 
method (Morris 1991) and the Sobol’ method (Sobol’ 1993) 
have proven to be effective and are broadly used. The Mor-
ris method is an one-factor-at-a-time method that provides 
a qualitative analysis with low computational requirements. 
The Sobol’ method is a variance-based method that can 
globally characterize single parameter and multiparameter 
interactive sensitivities (Fu et al. 2011). In previous studies, 
these methods have been applied mainly to complex hydro-
logical, and environmental models (Nossent et al. 2011; Han 
and Zheng 2016). Although, there are several prior studies 
that have involved sensitivity analyses of photosynthesis 
scheme (Zaehle et al. 2005; Walker et al. 2018), it is not 
yet known if the sensitive parameters that have significant 
influence on the model performance are the same in differ-
ent plant functional types. Thus, the sensitivity analysis in 

the FvCB model should be applied across a wider range of 
species and environmental conditions.

Subsequently, due to the significant role that the key 
parameters play in the FvCB model and land surface models, 
it is essential to estimate their values accurately. However, 
previous studies showed that estimates of the model’s pho-
tosynthetic parameters were influenced by the estimation 
method, which included least-squares regression (Harley 
et al. 1992; Dubois et al. 2007; Miao et al. 2009; Qian et al. 
2012), genetic algorithms (Su et al. 2009), and the Bayesian 
method (Zhu et al. 2011). More importantly, these param-
eters were confirmed to vary among plants, species, plant 
functional types, and bimoes (Pitman 2003; Patrick et al. 
2009; Galmés et al. 2014; Hermida-Carrera et al. 2016). To 
simultaneously obtain proper ranges of values for the model 
parameters in different levels, the hierarchical Bayesian 
approach is suitable because its hierarchical approach can 
account for the hierarchy of these levels, such as individual 
plants being nested within a species, and a species being 
nested within a functional type (Clark 2005). Specially, the 
hierarchical structure permits analysis of multiple data types 
within a single analysis. Data sets from diverse sources (i.e., 
a set of  CO2 response curve data) can exchange informa-
tion, which makes full use of available data. It can also miti-
gate the effects of measurement errors in the observed data. 
Recently, more and more studied proved that the HB method 
provides powerful tools for optimizing model parameters 
and quantifying uncertainties (Norros et al. 2017; Su et al. 
2018). Patrick et al. (2009) and Feng and Dietze (2013) have 
ever used the HB method to optimize model parameters of 
the FvCB model, and confirmed the HB method had great 
potential to improve the estimation of photosynthetic param-
eters in different levels. Nevertheless, photosynthetic data 
used in Patrick et al. (2009) just involved shrub species in 
a specific desert ecosystem in North America, while Feng 
and Dietze (2013) mainly focused on the variations of some 
key parameters (i.e., Vcmax/Vmax, Jmax/k, a, and Rd,) of 25 
grassland species. Among all parameters in the FvCB model, 
which parameters and how these parameters varied in differ-
ent environmental conditions and plant functional types have 
not yet been known, and need to be pay more attentions.

In this study, our goal is to identify the key parameters in 
the FvCB model and estimate their values at different hier-
archical levels across a wide range of species. To do so, we 
obtained 236 curves for the relationship between net  CO2 
assimilation and changes in the intercellular  CO2 concentra-
tion (i.e., the A/Ci curves) for 51  C3 species. The specific 
objectives were (1) to identify the sensitive parameters using 
the Morris and the Sobol’ methods, (2) to estimate the values 
of the key photosynthetic parameters at the level of plants, 
species, and plant functional types using the hierarchical 
Bayesian method, and (3) to assess the variation of these 
parameters at these three levels. In this context, we address 
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the following questions: among all the parameters in the 
FvCB model, which parameters have significant influence 
on the model performance? then, if the parameters (e.g., 
Michaelis–Menten constant: Kc25, Ko25; enthalpies of acti-
vation EJ, EV, ER, and Eg; or optical parameters θ, and α) 
commonly used as constant values are variable within and/
or across a broad plant functional types, species, and plants; 
and what are the distributions of these parameter values in 
different levels? Moreover, if there are significant differences 
in simulation accuracy when using parameter values of dif-
ferent levels (e.g., plant functional types, species level, and 
plant level)?

Materials and methods

This section consists of four major components. First, we 
describe our formulation of the FvCB model, including infor-
mation on how the model is driven, its structure, and its param-
eters). Next, we introduce the two sensitivity analysis methods 
and explain how they reveal the most sensitive parameters. 
Third, we clarify the hierarchical structure based on the mod-
el’s structure and the results of the sensitivity analysis. Last, 
we describe our data sources and performance metrics.

The FvCB model

The FvCB model was developed by Farquhar et al. (1980) and 
refined by other scholars (von Caemmerer and Farquhar 1981; 
Bernacchi et al. 2001; Long and Bernacchi 2003). It can be 
described as follows:

where An is the net photosynthetic rate (μmol m−2  s−1), and 
Ac and Aj are the net photosynthetic rates limited by Rubisco 
and RuBP, respectively (μmol m−2  s−1). We did not account 

(1)An = min
{

Ac,Aj

}

where Vcmax is the maximum rate of Rubisco activity 
(μmol m−2  s−1); Cc and o mean the partial pressure of carbon 
dioxide and oxygen, respectively (Pa); Γ* means the  CO2 
compensation point when mitochondrial respiration is zero 
(Pa); Kc and Ko are the Michaelis–Menten constants for car-
boxylation and oxygenation, respectively (kPa or Pa); J is the 
electron transport rate in the RuBP-limited stage (μmol m−2 
 s−1); Ci is the intercellular  CO2 concentration (μmol mol−1); 
Rd means the leaf dark respiration in the light (μmol m−2 
 s−1); and A means photosynthetic rate (μmol m−2  s−1). θ 
means the curvature (convexity) of the light-response curve; 
I means the photosynthetically active light absorbed by PSII 
(μmol m−2  s−1); Jmax means the maximum electron transport 
rate (μmol m−2  s−1); gm represents the mesophyll conduct-
ance (μmol m−2  s−1  Pa−1; Harley and Sharkey 1991; Sharkey 
et al. 2007); I0 is the total incident irradiance (μmol m−2  s−1); 
α means the leaf absorbance (von Caemmerer 2000); and f is 
a correction factor for spectral quality (equal to about 0.15; 
Evans 1987).

The three enzyme kinetics parameters (Kc, Ko, and Γ*) can 
be described as follows (Bernacchi et al. 2001, 2002):

where K25 is the value of Kc, Ko, or Γ* at 25 °C (Pa or kPa); 
Ea (i.e., EKc, EKo, EΓ*) is the activation energy (enthalpy; 
J mol−1 or kJ mol−1) for the three K parameters; and Tk 
means the leaf temperature (in K). The four temperature 
dependence parameters (Jmax, Vcmax, Rd, and gm) can be 
expressed using the Arrhenius function (Harley et al. 1986, 
1992; Lloyd et al. 1992; Medlyn and Dreyer 2002):

where K25 is the value of Vcmax, Jmax, Rd, or gm at 25 °C 
and Ea (i.e., the enthalpies of activation; EJ, EV, ER, Eg) is 
the rate of exponential increase of the function. The FvCB 
model uses a total of 16 parameters, which are summarized 
in Table 1.

Sensitivity analysis methods

The Morris method

The Morris (1991) method is a global sensitivity analysis 
method that provides a qualitative ranking of the sensitivity 

(4)Cc = Ci −
A

gm

(5)�J2 − (I + Jmax)J + IJmax = 0

(6)I = I0 × � × (1 − f )∕2

(7)
parameter (Kc,Ko, �

∗) = K25exp
[

Ea

(

Tk−298
)]

∕
(

298RTk
)

(8)parameter
(

Jmax,Vcmax,Rd, andgm
)

= K25exp
{

Ea

(

Tk−298
)

∕
(

298RTk
)}

for triose phosphate limitation (TPU) because this phase 
rarely limits photosynthesis and TPU limitation was uncom-
mon in field observations (Medlyn and Dreyer 2002; Patrick 
et al. 2009; Feng and Dietze 2013).

(2)Ac = Vc max

[

Cc − � ∗

Cc + Kc(1 + o∕Ko)

]

− Rd

(3)Aj =
J(Ci − � ∗)

4Ci + 8� ∗
− Rd
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of the parameters. In this method, the parameter range is nor-
malized as a uniform distribution within [0, 1] and discretized 
into a p-level grid Ω = {0, 1/(p–1), 2/(p–1), 3/(p–1), …, 1}. At 
a randomly selected point in Ω, the elementary effect (EE) of 
the ith parameter is:

where �⃗𝜃 is the n-dimensional vector of parameter sets, (θ1
*, 

θ2
*, …, θn

*) is a randomly selected point in Ω, and Δ is the 
fixed increment (p/[2(p–1)]), the function f means goodness-
of-fit metrics or relevant model outputs, and  EEi( �⃗𝜃,Δ) means 
the change in output f caused by a change in the ith param-
eter. To compute the values of EE for each parameter, n + 1 
simulations (i.e., a simulation for the selected point plus n 
simulations for the fixed increment Δ for the n parameters) 
are conducted to complete a “trajectory”. If the number of 
trajectories is q, we have q values of EE for each parameter 
with q(q + 1) simulations. Using the ensemble of EE values, 
it’s possible to describe the statistical characteristics of a 

(9)

EEi(
�⃗𝜃,Δ) =

f (𝜃∗
1
,… , 𝜃∗

i
+ Δ,… , 𝜃∗

n
) − f (𝜃∗

1
,… , 𝜃∗

i
,… , 𝜃∗

n
)

Δ

parameter’s sensitivity: the mean of EE (μ), the standard 
deviation of EE (σ), and the mean absolute EE (|EE|)]. The 
mean EE reflects a parameter’s overall effect, whereas the 
standard deviation of EE indicates the strength of the param-
eter’s nonlinearity or its interactions with other parameters. 
The mean absolute EE reveals the non-influential factor 
(i.e., a low mean absolute EE represents a less-important 
parameter), which can be used to rank parameter sensitiv-
ity (Campolongo et al. 2007; Han and Zheng 2016). In the 
present study, the grid level (p) was set to 6 and chose a 
trajectory number (q) of 500 (Gálvez and Capuz-Rizo 2016). 
Additionally, all the parameters in �⃗𝜃 were assumed to fol-
low uniform distributions, whose feasible ranges were listed 
in Table 1. The proposed ranges were mainly based on the 
default ranges in references.

The Sobol’ method

In contrast with the Morris method, the Sobol’ method is a 
quantitative sensitivity analysis method based on variance 
decomposition (Sobol’ 1990, 2001). The variance of certain 

Table 1  Parameters and prior ranges of the FvCB model

Process parameter Range Units Description References

Jmax25 (30.3, 200) μmol  m−2  s−1 Potential light-saturated electron transport 
rate at 25 °C

Medlyn and Dreyer (2002), Kattge and 
Knorr (2007), Patrick et al. (2009)

Vcmax25 (24.3, 200) μmol  m−2  s−1 Maximum carboxylation rate allowed by 
Rubisco at 25 °C

Medlyn and Dreyer (2002), Kattge and 
Knorr (2007), Patrick et al. (2009)

Rd25 (0.01, 10) μmol  m−2  s−1 Leaf dark respiration in the light at 25 °C Sharkey et al. (2007), Su et al. (2009), Zhu 
et al. (2011)

gm25 (0.03, 10) μmol  m−2  s−1 Pa
−1 Mesophyll conductance at 25 °C Ethier and Livingston (2004), Sharkey et al. 

(2007), Su et al. (2009)
Kc25 (24.8, 58.4) Pa Kc at 25 °C Sharkey et al. (2007), von Caemmerer et al. 

(1994), Patrick et al. (2009)
Ko25 (15.8, 50.4) kPa Ko at 25 °C Sharkey et al. (2007), von Caemmerer et al. 

(1994), Patrick et al. (2009)
� ∗
25

(2, 10) Pa Γ* at 25 °C Sharkey et al. (2007), von Caemmerer 
(2000)

EJ (35.9, 120.6) kJ  mol−1 Activation energy of Jmax Kattge and Knorr (2007), Leuning (1997, 
2002), Medlyn and Dreyer (2002), Shar-
key et al. (2007)

EV (51.3, 128.4) kJ  mol−1 Activation energy of Vcmax Kattge and Knorr (2007), Leuning (1997, 
2002), Medlyn and Dreyer (2002), Shar-
key et al. (2007)

ER (41.1, 92.6) kJ  mol−1 Activation energy of Rd Patrick et al. (2009)
Eg (20, 100) kJ  mol−1 Activation energy of gm Sharkey et al. (2007), Patrick et al. (2009)
EKc (54.6, 104) kJ  mol−1 Activation energy of Kc Ethier and Livingston (2004), Sharkey et al. 

(2007), von Caemmerer (2000)
EKo (9.3, 36.3) kJ  mol−1 Activation energy of Ko Ethier and Livingston (2004), Sharkey et al. 

(2007), von Caemmerer (2000)
EΓ* (23.5, 37.2) kJ  mol−1 Activation energy of Γ* Bernacchi et al. (2001), Ethier and Living-

ston (2004), Sharkey et al. (2007)
θ (0.15, 1) – Light-response curvature Patrick et al. (2009)
α (0.15, 1) mol  mol−1 Leaf absorbance Patrick et al. (2009)
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goodness-of-fit metrics or relevant model outputs can be 
decomposed into variances derived from both individual 
parameters and their interactions. The total variance D(f) can 
be decomposed into a series of summations of increasing 
dimensionality:

where f means a specific goodness-of-fit metric or relevant 
model output chosen by the researcher; Di is the amount of 
deviation of the ith parameter θi; Dij is the partial variance 
result from the interaction of θi and θj; and n is the total 
number of parameters. In this method, the sensitivity of a 
single parameter or of parameter interactions can be evalu-
ated by their percentage contribution to the total variance 
(D) in the form of two sensitivity indexes:

where Si indicates the contribution derived from the main 
effect of θi, STi means both the influence of θi and the influ-
ence of its interactions with all the other parameters, and 
D~i means the amount of deviation of all parameters other 
than θi. By analyzing the difference between STi and Si, we 
can assess the impact of the interaction between parameter 
θi and the other parameters.

The high dimensionality and nonlinearity of the FvCB 
model made it difficult to directly obtain analytical inte-
grals of variances. To solve that problem, we calculated the 
variances in Eq. (10) using Monte Carlo integrations which 
was found to be effective (Sobol’ 1993). The Monte Carlo 
approximations for D, Di, and D~i are given in the follow-
ing equations as presented in previous studies (Sobol’ 1993; 
Hall et al. 2005):

where the variable s represents the Monte Carlo sample 
size, θk represents the sampled individual in the scaled unit 

(10)D(f ) =
∑

i

Di +
∑

i<j

Dij +
∑

i<j<k

Dijk +⋯ + D12…n

(11)First − order index ∶ Si = Di∕D

(12)Total − order index ∶ STi = 1−
(

D∼i∕D
)

(13)f0 =
1

s

s
∑

k=1

f (�k)

(14)D =
1

s

s
∑

k=1

f 2(�k) − f 2
0

(15)Di =
1

s

s
∑

k=1

f (�
(a)

k
)f (�

(b)

(∼i)k
,�

(a)

ik
) − f 2

0

(16)D∼i =
1

s

s
∑

k=1

f (�
(a)

k
)f (�

(a)

(∼i)k
,�

(b)

ik
) − f 2

0

hypercube, and superscripts (a) and (b) are two different 
samples. Parameters with values drawn from sample (a) 
can be denoted by θk

(a). The symbols θik
(a) and θik

(b) donated 
cases when parameter θk draws values from sample (a) and 
(b), respectively, and θ(a)

(~i)k and θ(b)
(~i)k represented cases when 

all of the parameters except for θk use the sampled values 
in sample (a) and (b), respectively. In this study, we chose 
the Latin hypercube sampling (LHS) method to obtain sam-
ples (McKay et al. 2000; Sieber and Uhlenbrook 2005). 
The method segments the parameter space into N ranges, 
and each range was sampled only once. This ensures that 
every portion of the parameter space was taken into account 
(Helton and Davis 2003; Kucherenko et al. 2009). Then, N 
samples are generated for each parameter. Here, N was set 
to 10,000. The process can be repeated n (number of param-
eters, equal to 16) times for all parameters, such that a total 
of N × n (= 10,000 × 16) random sample combinations were 
generated. More detailed description of the implemented 
computational process of LHS can refer the following papers 
(Hall et al. 2005; Zhang et al. 2013). Moreover, feasible 
ranges for each parameter used in this method were the same 
as the ranges in the Morris method (Table 1). Based on the 
sensitivity index, we defined thresholds to differentiate 
among parameters with different sensitivity: highly sensi-
tive parameters had to account for an average of at least 10% 
of the overall model variance (i.e., a threshold of 0.10), vs. 
1% for sensitive parameters (i.e., a threshold of 0.01). When 
the contributions to the overall model variance were less 
than 0.01, we considered the parameters to be insensitive 
(Tang et al. 2007a, b). This threshold has been widely used 
in previous research based on the Sobol’ method (Cibin et al. 
2010; Gálvez and Capuz-Rizo 2016; Zhang et al. 2017).

Goodness‑of‑fit metrics

In both the Morris method and the Sobol′ method, the direct 
model output (f) is replaced by a model goodness-of-fit met-
ric (Nossent et al. 2011). Here, we chose the root-mean-
square error (RMSE):

where m is the total number of input data, and Anobs(r) and 
Ansim(r) are observed and simulated net photosynthetic rate 
of the rth data. To confirm the practicality and reliabil-
ity of our sensitivity analysis results for both the Morris 
method and the Sobol′ method using the RMSE metric for 
the FvCB model, we tested two additional goodness-of-fit 
metrics: the Nash–Sutcliffe efficiency (NSE) and the Bias 
(Details of these metrics are provided in the Supplementary 
Material). The procedures of the Morris and Sobol’ method 

(17)RMSE =

√

√

√

√

1

m

m
∑

r=1

(Anobs(r) − Ansim(r))
2
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were written in the computer programming language Matlab 
2015a (Detail code was provided in the text ‘Model Code’).

Hierarchical Bayesian model of photosynthesis

We used the hierarchical Bayesian framework to estimate 
the values of the key parameters by fitting the FvCB model 
to photosynthetic data in the form of A/Ci curves (Clark 
2007). This method can (1) estimate all parameters simulta-
neously, after considering both observation error and param-
eter uncertainty (Carlin et al. 2006); (2) incorporate multiple 
gas-exchange datasets simultaneously instead of fitting them 
curve by curve, and can therefore strengthen the results and 
improve model performance, especially with limited data; 
(3) estimate parameters in the form of posterior probability 
distributions rather than as single values; and (4) partition 
uncertainty into multiple processes, thereby improving our 
understanding of the model mechanisms.

This method accommodates complexity by dissecting the 
analytical procedure into three primary components: the data 

model, the process model, and the parameter model (Fig. 1). 
The data model describes the likelihood function for the 
observed net photosynthetic rate, which was assumed to be 
normally distributed around the simulated net photosynthetic 
rate, and can be expressed as:

where Anobs is the observed net photosynthetic rate 
(μmol m−2  s−1); Ansim is the simulated net photosynthetic 
rate based on the FvCB model (μmol m−2  s−1); and τ is the 
precision (= 1/variance) parameter, which reflects the vari-
ation of measurement errors.

The process model specifies the biochemical processes 
according to the FvCB model and predicted the simulated 
net photosynthesis based on observed data [T (represents 
the temperature in  °C), I, and Ci] and all model parameters.

The parameter model specifies the prior distributions 
for the parameters used in the process model. According 
to the results of our sensitivity analysis, we classified the 
16 parameters into two types: sensitive parameters (i.e., 
θ(S)) and insensitive parameters (i.e., θ(I)). For the sensitive 

(18)Anobs ∼ ������
(

Ansim, �
)

Fig. 1  Hierarchical Bayesian parameterization of the FvCB model. In 
the data model, Anobs (observed net photosynthetic rates), Ci (internal 
 CO2 concentration), T (temperature in  °C), and I (the photosyntheti-
cally active light absorbed by PSII) are input datasets. The process 
model describes parameters and model structure related to biochemi-

cal process of photosynthesis. The parameter model includes hier-
archical priors for each parameter. θ(S) and θ(I) are the sensitive and 
insensitive parameters, respectively. τp, τs and τPFT are the precision 
(1/variance) parameter which represents variation in plant, species, 
and PFTs, level, respectively
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parameters, we designed a nested and hierarchical structure 
(Fig. 1), in which we allowed the sensitive parameters to 
vary at four hierarchical levels (i.e., plant, species, and plant 
functional type, and population level) and to exchange infor-
mation within and across levels (Carlin et al. 2006). Based 
on this framework, we assumed that the plant-level param-
eters, which were directly relevant to the individual A/Ci 
curves, were nested within species, and that the species-level 
parameters were nested within the plant functional types. 
That is, sensitive plant-level parameters ( �(S)

p
 ) were assumed 

to be nested within species, such that:

where �(S)

s(p)
 represents the means of the species-level param-

eters for species s and τp represents the precision (= 1/vari-
ance) parameter that describes variability between individual 
plants or the curves within a species. Additional species-
level parameters varied around the plant function type 
parameters, such that:

where �(S)

PFT(s)
 and �s represent the mean at the plant function 

type level and the corresponding precision parameter for 
variation among species, respectively. Note that �s describes 
species-to-species variability within a plant function type. 
The plant function type level parameters varied around the 
population-level parameters, such that:

where �(S)
t

 and �PFT are the population-level mean and preci-
sion parameters for variation among plant functional types, 
respectively. Note that �PFT describes variability among plant 
functional types within the  C3 metabolic category for all 
sites included in our study.

For the insensitive parameters (θ(I)), we assigned non-
hierarchical priors (Fig. 1). Although the two Rubisco kinet-
ics parameters at 25 °C (Ko25 and � ∗

25
 ) and the activation 

energy parameters (ER, Eg, EKc, EKo, and EΓ*) are usually 
assumed to be constants across a wide range of  C3 species 
(von Caemmerer 2000), we hypothesized that they instead 
vary at the level of plant functional types. We employed 
slightly informative normal prior distributions with mean 
values (θ0) and small precision (τ0):

Finally, we must specify the distributions for the hyper-
prior parameters (i.e., �(S)

t
 , �PFT , �s , �p and τ) to complete the 

model hierarchy. Standard, relatively diffuse distributions 
are employed for the hyper-prior parameters, which ensure 

(19)�
(S)
p

∼ Normal(�
(S)

s(p)
, �p)

(20)�
(S)

s(p)
∼ Normal(�

(S)

PFT(s)
, �s)

(21)�
(S)

PFT(s)
∼ Normal(�(S)

t
, �PFT)

(22)�
(I)

PFT
∼ Normal(�0, �0)

the feasible parameter ranges were big enough to determine 
their values (Gelman 2006). Here, we specified a normal 
density with a large variance for these population-level mean 
parameters ( �(S)

t
 ). For the variance parameters, we chose 

folded Cauchy densities to generate the priors (Gelman 
2004, 2006). Detail information of each prior distribution 
were listed in the Supplementary Material.

By combining the three parts of the model, we gener-
ated posterior probability density functions for all param-
eters. The hierarchical Bayesian model was implemented 
in version 3.2.3 of the OpenBUGS statistical software 
(http://www.openb ugs.net/w/Front Page). In this method, 
many chains could run in parallel, thereby greatly improv-
ing the search efficiency for parameter posterior distri-
butions. We ran three Markov-chain Monte Carlo chains 
for 50,000 steps each, discarding the first 5000 steps for 
burn-in in every chain. The remaining samples were tested 
for convergence of each chain using the BGR diagnostic 
tool (Gelman 2004). Details of the hierarchical Bayesian 
model and the parameterization process are provided in 
the text ‘Model Code’.

Datasets

The photosynthetic data used in this paper came from 23 
field sites (Table 2), and had been collected by the Wright 
Lab (De Kauwe et al. 2016). These sites provided 236 A/Ci 
curves from 51 C3 species on four continents (Asia, Europe, 
North America, and Oceania) and represent six typical plant 
functional types that follow the Simple Biosphere model ver-
sion 2 (SiB2) classification: agriculture/C3 grassland (AGG), 
broadleaf-deciduous trees (BDT), broadleaf-evergreen trees 
(BET), dwarf trees and shrubs (DTS), needleleaf-deciduous 
trees (NDT), and needleleaf-evergreen trees (NET). In most 
cases, gas-exchange measurements were conducted using the 
Li-6400 portable photosynthetic system (Li-Cor, Lincoln, 
NE, USA) (Ellsworth et al. 2015).

Performance metrics

The performance of the FvCB model whose parameters we 
parameterized was quantified by using the RMSE metric, 
calculated using Eq. (13) and Pearson’s correlation coef-
ficient (R) which was computed as follows:

(23)

R =

m
∑

r=1

(Anobs(r) − Anobs)(Ansim(r) − Ansim)

�

m
∑

r=1

�

Anobs(r) − Anobs

�2

⋅

m
∑

r=1

�

Ansim(r) − Ansim

�2

http://www.openbugs.net/w/FrontPage
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Table 2  Details of the data used in this study. Note that negative latitudes are in the southern hemisphere, and negative longitudes are in the 
western hemisphere

Plant functional types (PFTs) based on the Simple Biosphere model version 2 (SiB2) classification: AGG  agriculture/C3 grassland, BDT broad-
leaf-deciduous trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needleleaf-deciduous trees, NET needleleaf-evergreen 
trees

Site number Site name Latitude (°N) Longitude (°E) Biome type PFT Species

1 Kuringgai Murrua-track − 33.69 151.14 Temperate heath DTS Hakea dactyloides; Banksia mari-
ana; Hakea teretifolia; Banksia 
oblongifolia

− 32.70 151.14 Temperate heath DTS Banksia oblongifolia
− 33.69 151.14 Temperate heath BET Eucalyptus haemastoma

2 Duke Forest (FACE) 35.98 − 79.09 Temperate evergreen forest NET Pinus taeda
3 Duke Forest, NC, USA 35.98 − 79.09 Temperate evergreen forest NET Pinus virginiana

35.97 − 79.10 Temperate deciduous forest BDT Liquidambar styraciflua; Liri-
odendron tulipifera; Quercus 
alba; Carya tomentosa

4 Cedar Creek LTER 45.41 − 93.19 Temperate deciduous forest BDT Quercus macrocarpa
5 Cedar Creek LTER/BIOCON 

FACE
45.40 − 93.18 Temperate grassland or prairie AGG Lupinus perennis; Lespedeza 

capitata
AGG Solidago rigida; Anemone cylin-

drica; Achillea millefolium
AGG Agropyron repens; Bromus iner-

mis; Poa pratensis
6 Nevada Test site FACE 36.77 − 115.97 Desert AGG Oenothera perennis

DTS Larrea tridentata
7 Nevada Test Site, NV, USA 36.77 − 115.97 Desert DTS Ambrosia dumosa

DTS Krameria parvifolia
8 Aspen FACE 45.68 − 89.63 Temperate deciduous forest BDT Populus tremuloides; Acer sac-

charum; Betula papyrifera
9 Carolina Lake 35.90 − 79.09 Temperate deciduous forest NDT Taxodium distichum
10 Carolina Beach, NC, USA 34.05 − 77.91 Temperate coastal forest BET Quercus virginiana
11 Saginaw forest, MI, USA 42.27 − 83.81 Temperate deciduous forest AGG Podophyllum peltatum
12 UMBS Pellston, MI, USA 45.56 − 84.72 Temperate deciduous forest BDT Acer rubrum; Populus grandi-

dentata
13 Endla bog, Endla, Estonia 58.86 26.17 Boreal coniferous forest NET Pinus sylvestris
14 Hawkesbury, Richmond, NSW, 

Australia
− 33.61 150.01 Temperate tree plantation BET Eucalyptus globulus; Eucalyptus 

saligna; Eucalyptus dunnii; 
Eucalyptus melliodora;

15 Blue Mountains, NSW, Aus-
tralia

− 33.71 150.55 Sclerophyll woodland DTS Persoonia levis
BET Syncarpia glomulifera; Acacia 

obtusifolia; Banksia serrata
16 Cape Tribulation crane site, 

Queensland, Australia
− 16.10 145.45 Tropical rainforest BET Syzygium sayeri

17 La Sueur National Park, WA, 
Australia

− 30.19 115.14 Mediterranean (Kwongan) 
woodland

BET Eucalyptus todtiana; Banksia 
attenuata

18 Driftway Cumberland Plain, 
Richmond, NSW

− 33.62 150.74 Sclerophyll woodland BET Eucalyptus tereticornis

19 Cocoparra National Park − 34.17 146.23 Sclerophyll woodland DTS Hakea tephrosperma
BET Eucalyptus populnea

20 Illawarra, Robertson, NSW, 
Australia

− 34.62 150.71 Warm-temperate forest BET Eucalyptus fastigata

21 EucFACE site − 33.62 150.74 Temperate grassy woodland AGG Microlaena sp.
22 Mill Haft forest, UK 52.81 − 2.30 Deciduous forest BDT Quercus robur
23 Edgbaston wood, UK 52.81 − 2.30 Deciduous forest BDT Fagus sylvatica
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where Anobs and Ansim are the mean of the observed and 
simulated net photosynthetic rates, respectively. We also 
used the Nash–Sutcliffe efficiency (NSE) and the Bias 
goodness-of-fit metrics to validate the results using RMSE. 
Details of these two additional metrics are provided in the 
Supplementary Material. Additionally, model comparison 
was quantified using Deviance Information Criterion (DIC), 
details about the method can be found in the Supplementary 
Material, and also available in Spiegelhalter et al. (2002).

Results

Parameter sensitivity analysis

Figure S1 and Table S1 present the results of the sensitiv-
ity analysis using the Morris method. Not surprising, two 
parameters (the maximum electron transport rate at 25 °C, 
Jmax25, and the maximum rate of Rubisco activity at 25 °C, 
Vcmax25) were the most sensitive across all plant functional 
types. The dark respiration in the light (Rd25), mesophyll 
conductance (gm25), and Michaelis–Menten constant (Kc25) 
at 25 °C, as well as the enthalpy of activation for Jmax 
(EJ) and Vcmax (EV), the light-response curvature (θ), and 
absorbance (α), which were distributed in the intermediate 
region of the graphs in Fig. S1, were sensitive parameters. 
The other parameters, with sensitivities distributed around 
zero, were insensitive. Table 3 shows the ranks of the 10 
most sensitive parameters based on the mean |EE|. Obvi-
ously, Jmax25, Vcmax25, Rd25, and gm25 were the four most 
sensitive parameters across all plant functional types. The 
mean |EE| values for Jmax25 and Vcmax25 were nearly two 

times those of Rd25 and gm25. Figure S2a shows a strong 
and significant positive relationship between the Morris 
µ and σ values.

To verify the effectiveness and reliability of the Mor-
ris method, we also used the Sobol’ method to assess 
the key parameters in the FvCB model. Based on the 
thresholds in Tang et al. (2007a, b), we again found that 
Jmax25 and Vcmax25 were the most sensitive parameters 
across all plant functional types (Fig. 2a). The average 
values of Si ranged from 0.34 for DTS to 0.55 for NET 
for Jmax25 and from 0.19 for AGG to 0.28 for DTS for 
Vcmax25 (Table S2). These values were about 10 times the 
values for the other parameters across all plant functional 
types. At the same time, the Si values for Rd25, gm25, Kc25, 
EJ, and α ranged between 0.01 and 0.1, indicating that 
these five parameters were sensitive and also affected 
the model outputs. The remaining parameters had Si val-
ues less than 0.01, suggesting that these parameters were 
insensitive and that their variation had little effect on 
model simulations.

Figure 2b presents the results for the total-order sensi-
tivity indexes (STi). Once again, Jmax25 and Vcmax25 were 
the most sensitive across all plant functional types, with 
STi values ranging from 0.53 for DTS to 0.64 for NET for 
Jmax25 and from 0.31 for NDT to 0.49 for DTS for Vcmax25. 
Jmax25 contributed more than half of the total variance and 
Vcmax25 contributed more than about one-third. The STi val-
ues of EV and θ were greater than 0.01, whereas their Si 
values were smaller than 0.01. This suggested that although 
these parameters themselves had only a small effect, their 
interactions with other parameters had a noticeable effect 
on the model outputs. Overall, nine sensitive parameters 

Table 3  Sensitivities of the 9 
sensitive or highly sensitive 
parameters based on the mean 
(µ) elementary effect |EE|, 
and the resulting rankings for 
the size plant functional types 
(PFTs)

PFTs: AGG  agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET broadleaf-evergreen trees, DTS 
dwarf trees and shrubs, NDT needleleaf-deciduous trees, NET needleleaf-evergreen trees. μ mean of |EE|
Parameters: EJ enthalpy of activation for Jmax, EV enthalpy of activation for Vcmax, gm25 mesophyll con-
ductance, Jmax25 light-saturated electron transport rate at 25 °C, Kc25 Michaelis–Menten constant at 25 °C, 
Rd25 dark respiration in the light at 25 °C, Vcmax25 maximum carboxylation rate of Rubisco at 25 °C, α leaf 
absorbance, θ light-response curvature

Parameter PFT

BET BDT NET NDT DTS AGG 

μ Rank μ Rank μ Rank μ Rank μ Rank μ Rank

Jmax25 9.72 2 14.69 1 16.10 2 10.98 2 14.36 1 14.72 1
Vcmax25 10.12 1 11.83 2 20.61 1 23.13 1 10.91 2 10.02 2
Rd25 5.71 4 6.07 4 6.70 3 7.19 3 5.14 3 6.08 4
gm25 6.55 3 8.61 3 6.42 4 5.42 4 4.18 4 7.87 3
Kc25 3.73 5 3.92 6 4.34 5 4.44 5 3.79 5 3.26 6
EJ 2.51 8 5.86 5 2.23 9 3.68 7 3.14 7 4.41 5
EV 2.26 9 2.83 8 2.72 7 4.12 6 1.93 8 1.63 9
θ 2.63 7 2.7 9 2.77 6 1.64 8 1.92 9 2.15 8
α 2.90 6 3.60 7 2.69 8 1.40 9 3.41 6 3.09 7
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(Jmax25, Vcmax25, Rd25, gm25, Kc25, EJ, EV, θ, and α) contrib-
uted strongly to the model outputs across plant functional 
types, whereas the remaining seven insensitive parameters 
had almost negligible effects. We observed similar results 
when we used the NSE and Bias goodness-of-fit metrics 
(see Supplementary Material Figs. S1g–r, S3, and S4).

Hierarchical Bayesian parameterization

Figures 3 and 4 show the plant-level posterior distributions 
for the highly sensitive and sensitive parameters. The hier-
archical Bayesian algorithm was generally able to decrease 
the ranges of the prior distributions of the parameters, as 

Fig. 2  The a first-order (Si) and b total-order (STi) sensitivity indexes 
for the 16 parameters in the 51 species. Parameters: EJ enthalpy of 
activation for Jmax, EV enthalpy of activation for Vcmax, ER enthalpy 
of activation for Rd, Eg enthalpy of activation for gm, EKc enthalpy of 
activation for Kc, EKo enthalpy of activation for Ko, EΓ* enthalpy of 
activation for Γ*, gm25 mesophyll conductance, Jmax25 light-saturated 

electron transport rate at 25  °C, Kc25 Michaelis–Menten constant at 
25  °C, Ko25 Michaelis–Menten constant for Rubisco at 25  °C, Rd25 
dark respiration in the light at 25  °C, Vcmax25 maximum carboxyla-
tion rate of Rubisco at 25 °C, α leaf absorbance, � ∗

25
  CO2 compensa-

tion point when mitochondrial respiration is zero at 25  °C, θ light-
response curvature
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shown by the relatively narrow 95% credible intervals (CIs). 
All nine highly sensitive or sensitive parameters (i.e., Jmax25, 
Vcmax25, Rd25, gm25, Kc25, EJ, EV, θ, and α) exhibited plant-
level variation (Figs. 3, 4; Table S3). Jmax25 and Vcmax25 var-
ied from 42.61 to 205.90 μmol m−2  s−1 and from 23.53 to 
121.70 μmol m−2  s−1, respectively. Both parameters gener-
ally had smaller posterior medians for needle-leaved trees 
than for the other plant functional types (Fig. 3). Moreo-
ver, the posterior medians of Jmax25 and Vcmax25 were sig-
nificantly positively correlated (P < 0.01, n = 236; Fig. 5a) 
without imposing restrictions on prior information between 
the two parameters. Among different plant functional types, 
the standard major axis (SMA) slopes of Jmax25 and Vcmax25 
ranged from 1.71 (95% CI 1.51, 1.94) for AGG to 2.37 (95% 
CI 1.93, 2.92) for NET (further details about slopes and 
intercepts with 95% CI, coefficients of determination (R2), 
P value, and sample size for each plant functional types 
were given in Table S4). The plant-level posterior medians 
for Rd25 ranged from 0.29 μmol m−2  s−1 to 8.73 μmol m−2 
 s−1 across all plants, except for two outliers (with values 
of − 0.23 and − 0.04 μmol m−2  s−1 for two plans named 

Banksia attenuata). Rd25 was also positively correlated with 
Vcmax25 across plants (P < 0.01, n = 236; Fig. 5b). The SMA 
slopes of Rd25 and Vcmax25 ranged from 0.07 to 0.11 among 
plant functional types, and exhibited no significant differ-
ence (further details about slopes and intercepts with 95% CI 
were provided in Table S4). In addition, gm25 varied widely 
among the plants, with a minimum value of 0.36 μmol m−2 
 s−1 Pa

−1 and a maximum value of 6.07 μmol m−2  s−1 Pa
−1 

(Fig. 3d). Kc25, EJ, EV, θ, and α, which were previously 
assumed to be constant across species (von Caemmerer 
2000; Bernacchi et al. 2001), exhibited considerable vari-
ation (Fig. 4; Table S3).

Figure  6 shows the posterior medians at the species 
level. For Jmax25, the median ranged from 52.82 μmol m−2 
 s−1 (Pinus virginiana) to 138.80 μmol m−2  s−1 (Ambrosia 
dumosa), and Vcmax25 ranged from 35.04 μmol m−2  s−1 (Pinus 
sylvestris) to 82.00 μmol m−2  s−1 (Ambrosia dumosa). Rd25 
at the species level ranged from 0.45 μmol m−2  s−1 (Pinus 
sylvestris) to 4.30 μmol m−2  s−1 (Ambrosia dumosa). The 
posterior distributions of Jmax25, Vcmax25, and Rd25 seemed 
much lower for needle-leaved species. The species-level 

Fig. 3  Posterior medians (filled circles) and 95% confidence intervals 
(CI, shaded areas) for plant-level variation estimated using the hierar-
chical Bayesian framework based on 236 curves for the relationship 
between net  CO2 assimilation and changes in the intercellular  CO2 
concentration for the highly sensitive photosynthetic parameters. Esti-
mates are shown for a the maximum electron transport rate at 25 °C 
(Jmax25), b the maximum rate of Rubisco activity at 25 °C (Vcmax25), c 

the leaf dark respiration rate in the light at 25 °C (Rd25), and d meso-
phyll conductance at 25 °C (gm25). Plant-level estimates were calcu-
lated for the six plant functional types (PFTs): AGG  agriculture/C3 
grassland, BDT broadleaf-deciduous trees, BET broadleaf-evergreen 
trees, DTS dwarf trees and shrubs, NDT needleleaf-deciduous trees, 
NET needleleaf-evergreen trees
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posterior medians of gm25 exhibited wide variation, with the 
lowest value of 0.79 μmol m−2  s−1 Pa

−1 (Acer saccharum) and 
the highest of 4.04 μmol m−2  s−1 Pa

−1 (Ambrosia dumosa). 
Kc25 showed slightly higher values for DTS species than for 
other species. EJ and EV for needle-leaved (NET and NDT) 
species were obviously lower than for other species. Interest-
ingly, the light-response curvature (θ) and leaf absorbance 
(α) varied widely, median of them from 0.41 to 0.99 for θ 
and from 0.58 to 0.99 mol mol−1 for α. Table S5 provides 
the medians and 95% CIs for all species at the species level.

At the level of the plant functional types, the values of 
the sensitive and highly sensitive parameters also exhibited 
obvious differences among plant functional types (Fig. 7). 
For example, Jmax25 values ranged from 54.71 for NET to 
107.10 μmol m−2  s−1 for DTS and Vcmax25 values ranged 
from 35.72 for NET to 75.30 μmol m−2  s−1 for DTS. At 
the level of the plant functional types, Rd25 values ranged 
from 1.44 for NET to 3.64 μmol m−2  s−1 for DTS and gm25 

values ranged from 0.99 for NDT to 1.87 μmol m−2  s−1 Pa
−1 

for DTS. The posterior distributions for Jmax25, Vcmax25, and 
Rd25 were generally highest for shrubs and herbaceous plants 
(DTS and AGG), intermediate for deciduous trees (BET and 
BDT), and lowest for needle-leaved trees (NET and NDT). 
gm25 values were lowest for needle-leaved trees (NET and 
NDT), but did not differ significantly among the other plant 
functional types. The posterior distributions for Kc25 was sig-
nificantly higher for DTS than for the other plant functional 
types. The two activation energy parameters had values that 
ranged from 30.10 (NET) to 66.74 kJ mol−1 (DTS) for EJ and 
from 41.91 (NET) to 90.99 kJ mol−1 (DTS) for EV (Table 4). 
The posterior distributions of θ were significantly lower for 
the needle-leaved plant functional types (NET and NDT) and 
the posterior distributions of α was significantly lower for 
NET, with no significant differences among the other plant 
functional types. 

Fig. 4  Posterior medians (filled circles) and 95% confidence intervals 
(shaded areas) for plant-level variation using the hierarchical Bayes-
ian framework based on 236 curves for the relationship between net 
 CO2 assimilation and changes in the intercellular  CO2 concentration 
for the sensitive photosynthetic parameters. Estimates are shown for 
a the Michaelis–Menten constant for carboxylation at 25  °C (Kc25), 

b the activation enthalpy for Jmax (EJ), c the activation enthalpy for 
Vcmax (EV), d light-response curvature (θ), and e leaf absorbance (α). 
Plant-level estimates were calculated for the six plant functional types 
(PFTs): AGG  agriculture/C3 grassland, BDT broadleaf-deciduous 
trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs, 
NDT needleleaf-deciduous trees, NET needleleaf-evergreen trees
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Figure S5 shows the posterior distributions for the 
seven insensitive parameters (ER, Eg, EKc, EKo, EΓ*, Ko25, 
and � ∗

25
 ), and Table  S6 provides detailed statistics for 

these parameters. The shape of plots revealed that these 
insensitive parameters did not differ significantly among 
the plant functional types. The present medians were in 
excellent agreement with values derived from traditional 
research [63.90 kJ mol−1, 49.6 kJ mol−1, 70.40 kJ mol−1, 
29.80 kJ mol−1, 26.80 kJ mol−1, 16.58 kPa, and 3.74 Pa for 
ER, Eg, EKc, EKo, EΓ*, Ko25, and � ∗

25
 , respectively; Sharkey 

et al. (2007)].

Performance of the FvCB model with parameters 
at different hierarchical levels

Having parameterized the FvCB model as described in the 
previous sections, we ran the model to simulate An (Eq. 1) 
using parameter values at the plant, species, and plant func-
tional type levels. Figure 8 provides a scatterplot of the 
observed and simulated values of An. Table S7 provides the 
detailed regression results. Obviously, the FvCB model with 
plant-level parameters performed best. Points in the scat-
terplot for the observed-versus-simulated net photosynthetic 
rates fell close to the 1:1 line (Fig. 8a), with R2 ranging 
from 0.97 to 0.99 and RMSE ranging from 0.40 to 1.31. 
Model performance using the species-level parameters was 
generally acceptable. RMSE ranged from 0.90 to 5.98, with 
R2 ranging from 0.83 to 0.95, and the results were tightly 

clustered around the 1:1 line (Fig. 8b). The simulations that 
used parameters at the level of plant functional types had 
the lowest accuracy, with R2 ranging from 0.53 to 0.93 and 
RMSE ranging from 1.57 to 11.64.

Given that the FvCB model is based on a mechanistic 
model of photosynthesis, it’s important to confirm that the 
values of the parameters estimated by the hierarchical Bayes-
ian method were biochemically meaningful. We randomly 
selected six species (i.e., Eucalyptus todtiana, Liquidambar 
styraciflua, Pinus taeda, Taxodium distichum, Persoonia 
levis, and Microlaena sp.) which belonged to the BET, BDT, 
NET, NDT, DTS, and AGG plant functional types, respec-
tively, to visualize the differences in model performance 
using parameters determined at the plant (Fig. 9a–f), species 
(Fig. 9g–l), and plant function type levels (Fig. 9m–r). In the 
FvCB model, the  CO2 assimilation rate is limited by either 
Rubisco or by regeneration of RuBP. (We omitted limitations 
caused by triose phosphate use in our analysis because, as 
noted in the Methods section, this is generally not a large 
factor.) Obviously, both the Rubisco-limited stage (Ac) and 
the RuBP-limited stage (Aj) were fitted well when the FvCB 
model used plant-level parameters. However, the model’s 
performance using parameter values at the species or plant 
function type levels decreased. For example, the A/Ci curve 
for Taxodium distichum, Persoonia levis, and Microlaena 
sp. using the plant functional type parameters showed that 
the RuBP-limited stage provided a best fit to the observed 

Fig. 5  Relationships between the posterior medians of a the maxi-
mum electron transport rate at 25 °C (Jmax25) and the maximum rate 
of Rubisco activity at 25 °C (Vcmax25) at the individual plant level; and 
b leaf dark respiration in the light at 25 °C (Rd25) and the maximum 
rate of Rubisco activity at 25  °C (Vcmax25) in using standard major 

axis (SMA) analyses with 95% confidence intervals (CIs) for different 
PFTs. PFTs: AGG  agriculture/C3 grassland, BDT broadleaf-decidu-
ous trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs, 
NDT needleleaf-deciduous trees, NET needleleaf-evergreen trees
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Fig. 6  Posterior distributions of the highly sensitive and sensitive 
parameters for each species. Values are medians (horizontal lines) 
and the 95% confidence intervals (bars). Species-level estimates were 
divided into six plant functional types (PFTs): AGG, agriculture/C3 
grassland; BDT, broadleaf-deciduous trees; BET, broadleaf-evergreen 
trees; DTS, dwarf trees and shrubs; NDT, needleleaf-deciduous trees; 

NET, needleleaf-evergreen trees. Parameters: EJ enthalpy of activa-
tion for Jmax, EV enthalpy of activation for Vcmax, gm25 mesophyll con-
ductance, Jmax25 light-saturated electron transport rate at 25 °C, Rd25 
dark respiration in the light at 25 °C, Vcmax25 maximum carboxylation 
rate of Rubisco at 25 °C, α leaf absorbance, θ light-response curva-
ture
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data, despite the underlying presence of the Rubisco-limited 
stage (Fig. 9p-r).

Discussion

Sensitivity analysis results

The biochemically based FvCB model provides a robust 
mechanistic representation of photosynthesis, and has there-
fore become the foundation for estimating GPP in many land 
surface models (Bonan et al. 2011; Rogers et al. 2017). How-
ever, except for the errors caused by model structure and 
data quality, model parameters impose considerable error 
when using these photosynthetic parameters empirically 
(Wullschleger 1993; Bonan et al. 2002; Orr et al. 2016). 
Thus, much effort should devote to obtain optimal param-
eters for characterizing the photosynthetic heterogeneity of 
vegetation (Patrick et al. 2009). Therefore, identifying the 
sensitive parameters in the FvCB model and analyzing their 

interactions is crucial for further optimization. Our sensi-
tivity analysis showed that the net photosynthesis rate was 
highly sensitive or sensitive to 9 of the 16 parameters (Jmax25, 
Vcmax25, Rd25, gm25, Kc25, EJ, EV, θ, and α) at plant functional 
types, species, or even individual plant level. Figure S1, 
S3, and S4 provide comparable results using the NSE and 
Bias goodness-of-fit results, suggesting that our approach 
is reliable.

Jmax25 and Vcmax25 were highly sensitive parameters across 
all plant functional types. As Jmax25 and Vcmax25 limit the 
photosynthetic rate at high and low  CO2 concentrations, 
respectively, their values directly restrict RuBP-limited (Aj) 
and Rubisco-limited photosynthesis (Ac). Previous studies 
have confirmed that appropriate values of Jmax25 and Vcmax25 
were crucial to accurately estimate net photosynthesis rate 
(Wullschleger 1993; Feng and Dietze 2013; Brito et al. 
2014; Atkin et al. 2015). After considering the seasonal vari-
ation of Jmax25 and Vcmax25, Zhu et al. (2011) provided a more 
accurate simulation of An in a typical desert riparian forest in 
northwestern China. Besides, Rd25 was another parameter to 

Fig. 7  Posterior distribution of the highly sensitive and sensitive 
parameters for each of the six plant functional types (PFTs): AGG  
agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET 
broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needle-
leaf-deciduous trees, NET needleleaf-evergreen trees. The values are 
medians (horizontal lines) and 95% confidence intervals (vertical 

bars). Parameters: EJ enthalpy of activation for Jmax, EV enthalpy of 
activation for Vcmax, gm25 mesophyll conductance, Jmax25 light-satu-
rated electron transport rate at 25 °C, Rd25 dark respiration in the light 
at 25 °C, Vcmax25 maximum carboxylation rate of Rubisco at 25 °C, α 
leaf absorbance, θ light-response curvature
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Table 4  Posterior probability distributions (medians and 95% credible intervals [CIs]) for highly sensitive and sensitive parameters at the level of 
the six plant functional types (PFTs)

PFTs: AGG  agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needle-
leaf-deciduous trees, NET needleleaf-evergreen trees
Parameters: EJ enthalpy of activation for Jmax, EV enthalpy of activation for Vcmax, ER enthalpy of activation for Rd, Eg enthalpy of activation for 
gm, EKc enthalpy of activation for Kc, EKo enthalpy of activation for Ko, EΓ* enthalpy of activation for Γ*, gm25 mesophyll conductance, Jmax25 
light-saturated electron transport rate at 25 °C, Kc25 Michaelis–Menten constant at 25 °C, Ko25 Michaelis–Menten constant for Rubisco at 25 °C, 
Rd25 dark respiration in the light at 25 °C, Vcmax25 maximum carboxylation rate of Rubisco at 25 °C, α leaf absorbance, � ∗

25
  CO2 compensation 

point when mitochondrial respiration is zero at 25 °C, θ light-response curvature

Parameters PFT

BET BDT NET NDT DTS AGG 

Median [95% CI] Median [95% CI] Median [95% CI] Median [95% CI] Median [95% CI] Median [95% CI]

Jmax25 (μmol m−2  s−1) 100.90
[84.83 109.90]

92.01
[85.41 194.21]

54.71
[42.94 70.07]

71.01
[60.25 81.30]

107.10
[91.05 117.20]

91.05
[83.77 105.90]

Vcmax25 (μmol m−2  s−1) 65.30
[62.78 67.20]

59.40
[53.75 64.14]

35.72
[30.23 45.21]

42.94
[35.00 50.01]

75.30
[70.41 78.90]

62.13
[56.02 67.10]

Rd25 (μmol m−2  s−1) 3.01
[2.22 3.47]

2.40
[1.67 2.95]

1.44
[0.50 2.40]

1.59
[0.89 2.06]

3.64
[3.36 4.30]

2.89
[2.38 3.85]

gm25 (μmol m−2  s−1 Pa
−1) 1.74

[1.94 2.88]
1.56
[0.99 2.31]

1.00
[0.50 1.63]

0.99
[0.30 1.56]

1.87
[1.32 2.12]

1.69
[1.13 2.23]

Kc25  (Pa) 31.44
[28.46 30.81]

31.55
[30.00 34.41]

30.24
[28.00 32.17]

35.00
[33.00 38.01]

39.76
[37.56 42.73]

31.53
[20.46 32.47]

EJ (kJ mol−1) 55.73
[58.10 62.22]

52.84
[49.77 55.78]

30.10
[25.00 35.02]

36.31
[29.99 44.01]

66.74
[62.24 70.79]

58.13
[53.47 56.59]

EV (kJ mol−1) 78.61
[73.89 86.67]

74.26
[67.74 85.95]

41.91
[32.00 48.01]

51.69
[40.00 87.17]

90.99
[81.79 101.40]

82.79
[75.92 85.97]

θ (dimensionless) 0.92
[0.81 0.98]

0.85
[0.76 0.99]

0.51
[0.41 0.68]

0.55
[0.45 0.66]

0.76
[0.66 0.88]

0.92
[0.83 0.99]

α (mol mol−1) 0.88
[0.79 0.98]

0.80
[0.68 0.89]

0.59
[0.46 0.69]

0.76
[0.66 0.88]

0.88
[0.80 0.94]

0.82
[0.69 0.93]

Fig. 8  Regression between the observed (A-nobs) and simulated (Ansim) 
net photosynthetic rates. Regressions were conducted using the 
derived parameter values at the a plant level, b species level and c 
plant functional type (PFT) level. The DIC was used for model selec-

tion  (DIC(a) = 973.44,  DIC(b) = 633.52, and  DIC(c) = 1583.68). PFTs: 
AGG agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET 
broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needle-
leaf-deciduous trees, NET needleleaf-evergreen trees
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which An was sensitive. This parameter can reveal  CO2 evo-
lution from mitochondria under lighted conditions, which is 
a significant process of the carbon lost by plants, and is cen-
tral to the prediction of plant photosynthesis capacity with 
the FvCB model. Furthermore, gm25 were also identified as 
sensitive parameter in our study. It is important because sto-
matal aperture dominates a plant’s photosynthesis process 
and responds rapidly to changes in environmental conditions 
such as the air temperature, relative humidity, and soil water 
content (Lin et al. 2015; Franks et al. 2018).

Interestingly, parameters Kc25, EJ, EV, θ, and α, which 
were paid relatively less attention in model simulation, were 
found to be sensitive to model output. Kc25 describes intrin-
sic properties of Rubisco which tendency to confuse the 
photosynthetic substrate  (CO2) with the product  (O2), and 
determines the efficiency with which plants use their basic 
resources of light, water, and N (Tcherkez et al. 2006; Orr 
et al. 2016). The Rubisco-limited stage of photosynthesis 
(Ac) can be restricted by the parameter Kc25. Therefore, the 
variation of Kc25 would have a big influence on the photo-
synthetic rates simulation. In terms of the model structure, 

EJ and EV represent the exponential rate of increase of the 
Arrhenius function. Fluctuations of both parameters are 
directly linked with the accuracy of simulations of Jmax and 
Vcmax. At the same time, the activation energy, EJ and EV, is 
a measure of temperature dependence of Aj and Ac, respec-
tively (Yamori et al. 2005). Previous study has confirmed 
that the optimal temperature of Aj and Ac was influenced by 
the variation of EJ and EV (Hikosaka et al. 2006). That may 
be why optimal values of EJ and EV significantly improved 
estimates of An. θ and α are related to the underlying opti-
cal properties of a leaf, which were believed to be similar 
across diverse  C3 species with empirical values of around 
0.7 and 0.85 (Evans 1989; Kosugi et al. 2003). In the pre-
sent study, the magnitude of the effect of parameter interac-
tions on sensitivity (i.e., STi − Si) accounted for an important 
proportion of their total-order indexes. Such results suggest 
that θ and α can affect model performance through their 
interactions with other parameters. Furthermore, Ögren and 
Evans (1993) found that plants had high  CO2 assimilation 
rate commonly with low θ values, while plants had low  CO2 
assimilation rate with high θ values. Therefore, to simulate 

Fig. 9  Relationships between the simulated curve for the net photo-
synthetic rate (An) and the intercellular  CO2 concentration (Ci) for six 
representative species from different plant functional types (PFTs): a 
Eucalyptus todtiana (broadleaf-evergreen trees), b Liquidambar sty-
raciflua (broadleaf-deciduous trees), c Pinus taeda (needleleaf-ever-

green trees), d Taxodium distichum (needleleaf-deciduous trees), e 
Persoonia levis (dwarf trees and shrubs), and f Microlaena sp. (agri-
culture/C3 grassland) at the plant (a–f), species (g–l), and plant func-
tional type levels (m–r)
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a more reliable An, more accurate values of these sensitive 
parameters are required.

Parameterization of the hierarchical Bayesian model

Given that the FvCB model has been widely used as the 
basis for predicting carbon assimilation across a diverse 
range of PFTs, it is important to understand how the under-
lying behavior of the biochemical parameters varies among 
plant functional types, species, or individual plants. Our 
results provide new insights into these parameters based on 
a combination of sensitivity analysis and the hierarchical 
Bayesian framework based on 236 A/Ci curves from across 
continents and species. In particular, when comparing our 
results with the results based on the simple Bayesian frame-
work, we found that the model in using hierarchical Bayes-
ian framework exhibited a much better performance (RMSE 
values were 5.56 and 1.08, and the DIC values were 1755.81 
and 973.44 based on the simple Bayesian and hierarchical 
Bayesian framework, respectively; Figure S6; Table S8).

Parameter Jmax25, Vcmax25, Rd25, and gm25 exhibited obvi-
ous variability at the levels of plants, species, and plant 
functional types (Figs. 3, 6 and 7; Table S3). The posterior 
medians generally fell within the range of values reported 
in previous research (Wullschleger 1993; Zhu et al. 2011). 
Furthermore, Jmax25 and Vcmax25 demonstrated much lower 
values for needle-leaved trees (NET and NDT) than for other 
plant functional types (BET, BDT, DTS, and AGG). Medlyn 
and Dreyer (2002) observed similar results: Jmax25 ranged 
from 70.77 μmol m−2  s−1 for the needle-leaved tree Pinus 
sylvestris to 217.88 μmol m−2  s−1 for the agricultural species 
Glycine max. Vcmax25 ranged from 41.64 μmol m−2  s−1 for 
Abies alba to 97.76 μmol m−2  s−1 for Glycine max. Jmax25 
and Vcmax25 have long been found to be correlated, with 
slopes ranging from 1.0 to 3.0 across species (Wullschleger 
1993; Kattge and Knorr 2007; Miao et al. 2009). The SMA 
slopes of Jmax25 to Vcmax25 in our study ranged from 1.71 to 
2.37 with an average of 1.85 (Fig. 5a; Table S4), and hetero-
geneity were not significant among plant functional types. 
As has long been discussed, Rd25 is not yet well understood, 
and hence, it has been difficult to estimate accurately (Way 
and Yamori 2014). As a result, researchers have commonly 
used a fixed relationship between Rd25 and Vcmax25 in their 
models (Bonan et al. 2011). Unfortunately, the relationship 
between Rd25 and Vcmax25 was not always constant among 
plant functional types (Fig. 5b), which was also confirmed 
by de Kauwe et al. (2016). Here, we found that the values of 
Rd25 were generally highest for shrubs and herbaceous plants 
(DTS and AGG), intermediate for deciduous trees (BET and 
BDT) and lowest for needle-leaved trees (NET and NDT). 
Atkin et al. (2015) also found that Rd25 values were higher 
in herbaceous plants (including  C3 herbs/grasses) than in 
trees (including broad-leaved trees and needle-leaved trees) 

based on an analysis of 899 species. Our findings there-
fore improve estimates of Rd25 in the FvCB model and will 
improve associated estimates of carbon cycle components 
in land surface models. Extensive work has been done 
to compare gm values among species or plant functional 
types (Brito et al. 2014). For instance, Flexas et al. (2008) 
argued that herbaceous plants had the largest gm values (ca. 
4 mol μmol  m−2  s−1 Pa

−1), followed by deciduous trees (c. 
2 μmol m−2  s−1 Pa

−1), whereas evergreen trees had the lowest 
gm values (around 1 μmol m−2  s−1 Pa

−1). However, there are 
also limitations in our understanding of gm at 25 °C (gm25) 
that may lead to biases in using empirical values, which have 
mostly been based on limited data for tobacco plants (Walker 
et al. 2013). In the present study, the values of gm25 showed 
no obvious differences among BET, BDT, DTS, and AGG, 
but the values for needle-leaved trees (NET and NDT) were 
much lower, with average values of around 1.01 μmol m−2 
 s−1 Pa

−1; this agrees with the results of Flexas et al. (2008). 
This difference may be driven by the unique leaf structural 
characteristics of needle-leaved trees, which have thicker cell 
walls and lower ratio of exposed chloroplast surface to leaf 
area (Tomás et al. 2013).

Originally, the use of Michaelis–Menten constant for car-
boxylation (Kc25) was conserved, whose value was around 
27.24 Pa for most  C3 plants (von Caemmerer 2000). How-
ever, there is mounting evidence that Kc25 is not constant. A 
recent study revealed significant variation in Kc25 across 75 
species that resulted from diversity of the catalytic function 
in Rubisco (Orr et al. 2016). Variations were also confirmed 
in our study, with higher posterior distributions for Kc25 in 
DTS than in the other plant functional types. This empha-
sizes the need for additional work to improve our under-
standing of Kc25. Many current models related to the FvCB 
model assumed that EJ and EV were constant and could be 
based on values that usually come from spinach (Jordan and 
Ögren 1984) or tobacco (Bernacchi et al. 2001). However, 
our results suggest that this assumption is not robust. For 
example, the values of EJ and EV for needle-leaved trees 
(31.0 and 44.44 kJ mol−1 on average, respectively) were 
much lower than those of broad-leaved plants (58.36 and 
80.73 kJ mol−1 on average, respectively). Thus, variation 
of EJ and EV should be taken into account when using these 
parameters in future research. Until the present study, θ and 
α have been commonly assumed to be constant at 0.7 (Evans 
1989) and 0.85 (von Caemmerer 2000), respectively. How-
ever, our results show that θ and α were both variable, with 
values of θ ranging from 0.41 for Pinus taeda to 0.99 for 
Populus tremuloides and with values of α ranging from 0.58 
for Pinus virginiana to 0.99 for Oenothera perennis. These 
findings highlight the need to improve our understanding of 
these parameters both through better parameter estimation 
methods and from more accurate field gas-exchange data. 
All in all, the variation of parameters Kc25, EJ, EV, θ, and 
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α at different levels confirmed our hypotheses that param-
eters commonly used as constant values in previous studies 
are evolvable within and/or across diverse species and plant 
functional types.

The FvCB model has been widely applied to scale pho-
tosynthesis from the leaf level to whole canopies or even 
biomes (Rogers et al. 2017). In most LSMs, some photo-
synthetic parameters are empirical values, whereas some 
are chosen at a coarse resolution to distinguish among plant 
functional types (Wullschleger et al. 2014; Fisher et al. 
2015). However, the present results demonstrate that vari-
ations of parameters at the plant and species levels were 
significant (Figs. 3, 4, 6; Table S3). We also found that mod-
els based on plant- and species-level parameters performed 
much better fitting precision than models based on plant 
functional type parameters (Fig. 8, Tables S4, S7). These 
findings highlight the importance of considering species- 
and plant-level variation in sensitive parameters when apply-
ing these parameters in land surface models. Moreover, bal-
ancing model performance and model complexity is also 
very important in LSMs’ simulation. The differences in DIC 
among the model in which parameters were used at different 
levels suggested that calibrating Jmax25, Vcmax25, Rd25, gm25, 
θ and α at species level, and Kc25, EJ, and EV at plant func-
tional types level was more reasonable than directly using 
a fixed value or at other levels, although these parameters 
exhibited obvious variability at the three levels simultane-
ously (further details were provided in the Supplementary 
Material Table S8). In summary, combining sensitivity 
analysis with a hierarchical Bayesian approach provided 
an effective framework to identify and optimize parameters 
in the FvCB model across a diverse range of species. The 
results not only improved our understanding of the behavior 
of these parameters, but also provided more accurate esti-
mates of the parameter values for use in land surface models 
to simulate the carbon cycle.

Looking forward

For the moment, working at the resolution of the PFTs offers 
a reasonable compromise, as this level has been well inte-
grated into LSMs [SiB2 (Sellers et al. 1995a, b); CLM4.5 
(Oleson et al. 2013)]. Most current models use PFT-specific 
constant parameter values for regional or global applica-
tions (Wullschleger et al. 2014), and do not account for spe-
cies- and plant-level variation. Our results demonstrated that 
variation of parameters at the species and plant levels was 
also highly significant, and should be considered in future 
models. Also, some field experiments documented that the 
variation of plant traits in species level was large and often 
even greater than that in plant functional types level (Wright 
et al. 2005; Laughlin et al. 2010). Given recent advances in 
our ability, like the HB method, to model diverse variation 

in different levels (e.g., plant functional types and species), 
future research should present a more accurate parameteriza-
tion scheme for LSMs.

Conclusions

To obtain more accurate values of the common key param-
eters used in the FvCB model and analyze their variation 
within and across different hierarchical levels (plant, species, 
and plant functional types), we combined the use of two sen-
sitivity analysis methods (the Morris and Sobol’ methods) 
and the hierarchical Bayesian parameter estimation method. 
The results were more accurate than the results of simula-
tions with a simple Bayesian framework. We found that: (1) 
Jmax25 and Vcmax25 were highly sensitive parameters and Rd25, 
gm25, Kc25, EJ, EV, θ, and α were sensitive parameters; thus, 
these parameters should be estimated as accurately as pos-
sible for each model; (2) Jmax25, Vcmax25, and Rd25 exhibited 
lower posterior distributions for needle-leaved trees (NET 
and NDT) than for the other plant functional types (BET, 
BDT, DTS, and AGG); thus, these parameters should be esti-
mated separately for these groups; (3) the posterior medians 
of Jmax25 and Vcmax25 were strongly correlated, suggesting 
that more work will be necessary to understand their rela-
tionship; and (4) variation of parameters at the species level 
should be accounted for in future research. Note that because 
our study focused on  C3 plants, the results should not be 
extended to  C4 plants. Such studies will further improve our 
understanding of the distributions of parameter values so 
that we can account for this variation in the photosynthesis 
modules of LSMs.
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